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Abstract

A procedure for implementing Coulomb collisions into hybrid (particle-fluid) plasma models is outlined which is rapid
in execution due to the use of approximate expressions for the collision integrals and conserves energy and momentum
exactly. Particles undergo dynamic friction and diffusion in velocity-space at rates consistent with the velocity-dependent
Fokker–Planck diffusion coefficients and there are no assumptions made about the shape or size of the particle distribution
function. The method is tested against the analytical theory of test particle slowing in a background plasma and the ther-
mal equilibration of a Maxwellian distribution.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many plasma models treat either the ions or the electrons as a fluid in local thermodynamic equilibrium
while retaining the kinetic aspects of the other component [1,2]. Such models have been applied to a variety
of physical systems: from fast electron transport in intense laser–plasma interactions [3] to fast ignition [4] and
very recently to coronal mass ejections [5]. In these models, there often arises a need to simulate the Coulomb
collisional interaction of the kinetic component with the fluid background.

The modelling of Coulomb interactions between two kinetic species of charged particle was pioneered by
Takizuka and Abe in their seminal paper by [6]. Their method, which utilizes Monte-Carlo techniques, is
based on the random pairing of particles in close proximity, the calculation of a scattering angle in the cen-
tre-of-mass frame and the subsequent acceleration of those particles due to the interaction. This model has
been improved and commented on many times since its first publication, in, e.g. [7,8]. Indeed, there is a wealth
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of information on the implementation of Coulomb collisions in particle–particle models [9–11] (e.g. Particle-
In-Cell models) but relatively little on the subject for hybrid particle-fluid models.

In principle, it is straightforward to apply the model of [6] to the case in which one component is a back-
ground fluid. This can be achieved by generating the background particles at random (every time-step), con-
sistent with a local Maxwellian distribution at the fluid temperature. However, in the case that the kinetic
particle and background particle masses differ by a large factor, a prohibitively small time-step is required
to model the scattering. This is because the scattering angle is calculated in the centre-of-mass frame, and
the scattering angle in the laboratory frame may be much smaller (by a factor of the order of the mass ratio).
Hence, in order to simulate, for example, the scattering of a particle through an angle of p=2 radians, it may be
necessary to over-resolve the relevant collision time.

A model for colliding a particle species with a fluid background has been developed by Jones et al. [12]
through the calculation of a grid-based particle force (as in [13]). This model conserves energy and momentum,
is fast in execution and simple in implementation. However, while it does reproduce the multi-fluid momentum
and energy transport equations on average, it does not necessarily evolve the particle distribution function in
the correct way. It is essentially a low-order kinetic model, because only the first-(momentum) and second-
(energy) order moment equations are considered. As in Manheimer et al.’s Langevin approach [14], the coef-
ficients that determine particle scattering are not functions of the particle velocity and this may be too severe
an approximation when a more exact description of transport is required (as opposed to, for example, the
description of bulk properties such as the slowing of a fast beam of particles). Much analytic progress has also
been made recently in the case of velocity-independent coefficients [15]. In this paper an alternative model is
presented which evolves the particle distribution function according to the Fokker–Planck friction and diffu-
sion coefficients for test particles scattering off a Maxwellian background fluid. These coefficients have been
derived previously [16], and extended upon in a Langevin form by Cadjan and Ivanov [10], who consider
the case in which both colliding species are represented by particles that undergo Langevin acceleration.
The method described in this paper is an application of these ideas to hybrid plasma modelling in which at
least one species is represented by a fluid (rather than by particles) and the rest of the plasma has a particle
description. It is general in the sense that it applies to species of any given charge or mass (unlike [13,12,14])
and there is no assumption as to the velocity-distribution of the particle species (unlike and [15]). The method
also conserves energy and momentum exactly.

In the next section, the reduction of the Fokker–Planck equation to a Langevin form appropriate to a
particle-fluid description is outlined as well as how to expedite the calculation of the required background
distribution integrals and enforce exact momentum and energy conservation through their transfer to the
fluid. The final section describes some basic tests of the method.
2. Description of the method

Chandresekhar (as detailed in [16]) calculated the Fokker–Planck coefficients of dynamical friction and
diffusion for a test particle incident on a (stationary) Maxwellian distribution of field particles. Here, this is
extended to the case of a non-stationary background in which the only assumption is that the background
can be represented by a Maxwellian distribution drifting at the background fluid velocity. Under these
conditions, test particle motion is determined by three coefficients. The first represents a frictional force
and is deterministic. For a test particle with velocity w, charge Z and mass m incident on a Maxwellian
distribution of field particles with thermal speed vth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=mf

p
, charge Zf and mass mf , this friction is

described by
owk
ot
¼ �Að1þ m=mfÞ

Gðw=vthÞ
v2

th

; ð1Þ
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and ErfðxÞ is the standard error function. The other coefficients represent diffusion in velocity-space and as
such are stochastic. They characterise particle diffusion in directions parallel ðkÞ and perpendicular ð?Þ to
w, which occurs at different rates according to
ow2
k

ot
¼ A

Gðw=vthÞ
w

; ð3Þ
and
ow2
?

ot
¼ A

Erfðw=vthÞ � Gðw=vthÞ
w

: ð4Þ
The above equations can be used to evolve the particle velocities in time, but they assume that the background
fluid with which the particles interact is at rest. Thus it is first necessary to transform to the local fluid reference
frame via the transformation c ¼ v� u where v is the particle velocity and u is the fluid velocity (both defined
in the laboratory frame). The velocity c therefore represents the particle velocity in the fluid’s frame of refer-
ence. It is then beneficial to transform to a frame of reference in which the particle velocity is directed along the
wz-axis. This is done by rotating the particle velocity vector in the following manner:
0

0

wz

0
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1
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cosðhÞ cosð/Þ cosðhÞ sinð/Þ � sinðhÞ
� sinð/Þ cosð/Þ 0

cosð/Þ sinðhÞ sinðhÞ sinð/Þ cosðhÞ

0
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1
CA

cx

cy

cz

0
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1
CA;
so that wz ¼ c. Note that the actual matrix multiplication need not be carried out because the evaluation of w
is trivial, though it is necessary to pre-calculate the angles h and / for the reverse operation (see below) from
the formulae:
h ¼ a cos
cz

c

� �
; ð5Þ

/ ¼ a cos
cx

c?

� �
; ð6Þ
and
c? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

x þ c2
y

q
: ð7Þ
The inverse cosine should be appropriately defined in both half-planes of v? for the calculation of /.
At this point the wz component of the particle velocity can be evolved with Eq. (1) via
Dwz ¼ Dt
owk
ot

; ð8Þ
where Dt is the time-step.
Next, the stochastic change in w during Dt can be simulated by first evaluating the standard deviations

rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtow2

k=ot
q

and r? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtow2

?=ot
p

from Eqs. (3) and (4), respectively.

The parallel diffusion is simulated by further updating wz according to
Dwz ¼ bN ðrkÞ; ð9Þ
where the operator bN ðrÞ represents the act of choosing a random number from a normal distribution with
standard deviation r. The perpendicular diffusion is similarly obtained:
Dwx ¼ Dw? cosðh?Þ; ð10Þ
Dwy ¼ Dw? sinðh?Þ; ð11Þ
where Dw? ¼ bN ðr?Þ and h? is an angle chosen at random from a uniform distribution between 0 and 2p.
Upon completion of the above steps, the particle velocity vector must be rotated back to its original frame
via the inverse operation:
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followed by a translation to the laboratory frame ðv ¼ cþ uÞ.
As in the method of [6], the time-step may not always be less than the relevant relaxation time for every

particle. In this case a limiting factor ðflimÞ must multiply the change in velocity given by Eq. (8). An appro-
priate expression for flim is
flim ¼ minð1; ss

2Dt
;

sk
2Dt

;
s?
2Dt
Þ; ð12Þ
where
ss ¼
w

ðowk=otÞ ; ð13Þ

sk ¼
w2

ðow2
k=otÞ ; ð14Þ

s? ¼
w2

ðow2
?=otÞ : ð15Þ
In order that the method remain accurate the time-step should be much shorter than the above scattering
times for all relevant particles, though the slowing time is most important of all because if the time-step is
too large then particles may gain energy from the fluid rather than lose it. The method can be expedited by
using approximations to the velocity-dependent functions appearing in Eqs. (1)–(4). This avoids the need
to numerically evaluate the integrals. The following approximations, which can be clearly identified in Eqs.
(1), (3) and (4) for the diffusion coefficients, are suggested:
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th
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A polynomial fit can be used to evaluate ErfðxÞ. The above expressions were found by ensuring GðxÞ tends to
the correct limits as x! 0 and x!1 and they have a maximum fractional error of 0.1 in the intermediate
regime.

Finally, it is noted that conservation of energy and momentum can be easily ensured. Within each grid cell,
the change in the total particle momentum ð¼ ppartÞ can be calculated by summing the individual particle
momenta before and after the algorithm is executed:
Dppart ¼
X

Dpi; ð19Þ
where the summation is over the particle index i and Dpi is the change in the particle momentum during a time-
step. Momentum is balanced by ensuring the total particle momentum is transferred to the fluid
ðnfluidDpfluid ¼ �npartDppartÞ by adding the corresponding force to the fluid’s equation of motion. This allows
the change in the kinetic energy of the fluid ðDK fluidÞ to be calculated:
DK fluid ¼
ðpfluid þ DpfluidÞ

2

2m
� ðpfluidÞ

2

2m
; ð20Þ
where m is the fluid particle mass.
The change in the total energy of the particles can be calculated in a similar fashion to Eq. (19) and energy

conservation requires that this is transferred to the fluid (i.e. nfluidDEfluid ¼ �npartDEpart). The fluid’s thermal
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energy gain (DU fluid) will be the difference between its total energy gain (DEfluid) and its kinetic energy gain
(DK fluid):
Fig. 1.
velocit
DU fluid ¼ DEfluid � DK fluid: ð21Þ
3. Tests

The method has been implemented in the 2D hybrid plasma simulation code GEMINI. This code, the 2D
extension of the model described in [17], treats two species of ion kinetically (i.e. as particles) with a back-
ground electron fluid. Two important tests have been carried out with the code for a homogeneous plasma
(and an ion to electron mass ratio was chosen to correspond to aluminium ions). The first is the simulation
of particle ion slowing in an electron fluid, which is theoretically described by the simple equation of motion:
ovk
ot
¼ �vk=ss; ð22Þ
with ss ¼ w2=ðowk=otÞ. Fig. 1 shows that a beam of test ions slows at the correct rate. For the simulation, 100
particle ions were initialised with the same arbitrary velocity (which was around twice the background electron
thermal speed) and the velocity shown is the average over all ions. The ions had a charge state of one. Under
these conditions, the ion-electron thermal exchange time is comparable to the ion-electron slowing time. The
analytical slowing rate was calculated by numerically integrating Eq. (22) in time. Agreement is very good
until around a time t=ss ¼ 5, when ion diffusion starts to become dynamically important and Eq. (22) is no
longer the appropriate equation of motion. Diffusion starts to become important once the ion beam has
slowed sufficiently so that its average speed becomes comparable to the size of the diffusive ‘‘knocks” that each
of the particles suffer in velocity-space. During the slowing the ion beam distribution was observed to remain
close to Maxwellian (in the rest frame of the beam).

The second test considered is the equilibration of a Maxwellian distribution of particle ions to an isother-
mal background electron fluid. This test is more demanding than the first in that all aspects of the method are
simultaneously important because it relies on a relatively fine balance between dynamical friction and parallel
and perpendicular diffusion. For this test, 1000 particle ions were initialised at a temperature 10 times that of
the background electron fluid. The results are shown in Fig. 2 for three different time-steps. The theoretical
The slowing of an ion beam by collisions with a background electron fluid. The average ion velocity is normalised to the initial
y, while the time is normalised to the slowing timescale.



Fig. 2. The temperature of an initially Maxwellian ion particle distribution as it equilibrates with an isothermal background electron fluid
for various timesteps. The theoretical prediction is shown as a solid line. The time is normalised to the equilibration timescale given in Eq.
(24).
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curve was calculated by solving the equation which describes the temperature evolution of two Maxwellian
fluids [12]:
3

2

oT i

ot
¼ �m�ðT i � T eÞ; ð23Þ
where
m� ¼
1

s�
¼ 16

ffiffiffi
p
p

Z2e4ni lnðKÞ
memiv3

th

; ð24Þ
and v2
th ¼ 2ðT i=mi þ T e=meÞ. Again, the agreement between theory and simulation is very good once the time-

step ðDtÞ reaches one-hundredth of the equilibration time ðs�Þ, while there is an acceptable error for Dt ¼ 0:1s�.
When the equilibration is poorly resolved (i.e. for the case Dt ¼ 0:5s�), the rate of equilibration is relatively
accurate but the equilibrium temperature is overestimated by a factor of about 1.11.

A point should be made regarding the practicality of the method: in many areas of high energy density
physics the ion-electron collision time may well be shorter than hydrodynamical time-scales of interest but
it is not so short so as to render the method computationally prohibitive. As an example consider the ion-elec-
tron collision frequency in Al wire-array Z-pinch precursor flow [18], where the typical electron density is
7� 1017 cm�3 and the ion flow speed is 1:5� 105 ms�1. Taking an electron temperature of 20 (and Z = 7)
results in a characteristic scattering time of � 9 ns. By calling GEMINI’s collision algorithm 10 times every
scattering time, it is possible to simulate the precursor flow over hundreds of nanoseconds on a single CPU
in a matter of hours, while still maintaining reasonable spatial (�80 lm) and particle-per-cell (�100) resolu-
tion in 2D.
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